

Large-scale DSM Registration via Motion Averaging

Ningli Xu, Rongjun Qin

May 16, 2024

Digital Surface Model (DSM)

Orthophoto | City Models | Digital Terrain Models | Vectorized Building footprints ...

Global-scale mapping

SRTM DEM ASTER DEM NASA DEM ALOS 3D

~ 30 m spatial resolution

+/- 90 m vertical accuracy

Maxar 3D Foundation

Airbus WorldDEM

ZY-3, GF etc.

~ 5-0.5 m spatial resolution

+/- 3-10 m vertical accuracy

....

- More sources mean better data availability
- Ability to incorporate sources beyond images
- Potentially more cost-effective.

Problem

Biases exist on individually generated DSMs

QinLab Geospatial Data Analytics

Dataset: DFC 2019 Sensor: 26 WorldView2/3 images, LiDAR Time span: Apr,2016 - Aug,2017

Core of this work

Estimate the global transformation $\{T_i\}$ to remove the systematic errors of given DSMs

Challenges

1. Large computation & memory consumption

height: ~10,000 px

#points: ~ 100 *million*

2. Some area are flat and featureless Featureless area leads to ill-posed problem.

3. Varying degree of overlaps

Partial overlapping affects the registration accuracy, which need to be handled respectively

Methodology

Methodology

1. Pairwise DSM registration : DSM-ICP

Most resource consuming part is correspondence search. We proposed a fast and exact nearest neighboring search method using the grid structure of DSM.

Methodology

2. Multiview registration: Motion average

Errors are distributed across the graph

Observation: pairwise transformation $\{T_{ij}\}$ **Optimizable variable**: global transformation $\{T_i\}$

 $\min_{\{T_i\}} \sum w_{ij} \|T_{ij} - T_i^{-1} \cdot T_j\|_F^2$ $\mathbf{w}_{ij} = s_{ij} * r_{ij}$ **Overlap** ratio Pairwise registration quality $r_{ij} = \frac{e^{-err_{ij}}}{\sum_{(i,j)} e^{-err_{ij}}}$, err_{ij} is pairwise registration error

Lidar

[1] https://ieee-dataport.org/open-access/data-fusion-contest-2019-dfc2019

Accuracy of multiple registration

Method	RMSE [m]					
	JAX1	JAX2	JAX3	OMA1	OMA2	OMA3
Greedy	2.305	2.166	2.756	2.065	1.461	1.667
M-A	2.302	2.129	2.756	2.065	1.451	1.539

Accuracy of multiple registration

Profile in Jacksonville area2

Jacksonville Area2

Time consumption of pairwise registration

#Iter=0, time of constructing Kd-tree

#iter=1,2,3..., time of NN query 26.672 17200 ours ours 17500 Space complexity O (N), kdtree 10^{1} kdtree 15000 12500 10^{0} RAM (MB) 10000 Time (s) ,489 6900 7500 10^{-1} 5000 Time complexity O (k) Space complexity O (k) k: # cached points (fixed) 2500 1500 0.022 311 0 10-2 100 133 26 47 0.006 50 100 150 200 250 300 0 Number of reference points ($\times 1e^{6}$) 8 0 2 6 4 Number of iteration

106 million points

Wide area DSM (132 individual DSMs)

Wide area DSM (66 individual DSMs, including LiDAR DSM and Drone DSMs)

15 KM² Columbus, OH, USA

Multi-source DSM

Conclusions

- The use of the grid-structure is in good favor of large-scale DSM registration
- The motion average method is extremely effective in reducing systematic biases over multiple DSMs.